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INTRODUCTION 

Cryogenic  wind tunnels   have become impor t an t   t oo l s   fo r   h igh  Reynolds number 
research.   (See  ref .  1  by Kilgore e t  al .  ) A cryogenic  wind  tunnel ( T ' 2 )  has  been 
b u i l t  a t  the  Toulouse  Research  Center,  Toulouse,  France. (See r e f .  2 by Blanchard, 
Dor, and Bre i l . )  The 0.3-Meter Transonic  Cryogenic  Tunnel (0.3- TCT), b u i l t  as  a 
p i l o t   f a c i l i t y ,  i s  a t  t h e  Langley  Research  Center. The Nat ional   Transonic   Faci l i ty  
(NTF) a t  t h e  Langley  Research  Center (see r e f .  3 by F u l l e r ) ,  which is  expected t o  
become o p e r a t i o n a l   i n  1983, i s  a closed-circui t ,   fan-dr iven,   cont inuous-f low,   pres-  
sur ized   c ryogenic   tunnel   opera t ing  a t  p r e s s u r e s   u p   t o  9 atm (1  atm = 101.1 kPa)  and 
having a 6.25-m2-area s l o t t e d  t es t  s e c t i o n   t h a t  i s  7.6 m i n   l e n g t h .  The f a c i l i t y  
w i l l  ope ra t e  a t  temperatures  ranging  from  ambient down t o   a b o u t  100  K. Liquid  ni t ro-  
gen ( L N ~ )  sprayed  into  the  tunnel   upstream  from  the  fan  nacel le   performs  three 
cryogenic-cooling  functions:  (1 ) i n i t i a l  cooldown, ( 2 )  steady-flow  temperature  regu- 
l a t i o n  by balancing  the  energy  added by the   fan ,   and   (3)   p r imary   tempera ture   cont ro l  
in   passing  f rom  one  s teady-f low  condi t ion  to   another .   Total-pressure  control  i s  
accomplished by vent ing  tunnel   gaseous  ni t rogen ( G N 2 )  t o   t h e  atmosphere. Both L N 2  
and GN2 flows are  regula ted  by means of  servo-control  valves.  Fan-motor speed  deter-  
mines  coarse Mach number var ia t ion ,   whereas   fan   in le t   gu ide   vanes   furn ish   f ine   ver -  
n i e r  Mach number va r i a t ion .  The t u n n e l   s h e l l   h a s   i n t e r i o r   t h e r m a l   i n s u l a t i o n   w i t h   a n  
aluminum i n n e r   l i n e r .  This limits atmospheric-heat   penetrat ion  to  a neg l ig ib l e  
amount and  reduces  energy  consumption. See f i g u r e  1 f o r  a schematic  diagram  of  the 
NTF. 

GN2 vent 

Inlet  guide 

Fan section 
Fan-drive  speed 

Cooling  coil 1 I 
?Test  section 1 

I 

Figure 1.- Schematic  diagram  of  the  National  Transonic  Facil i ty (NTF). 

The h i g h   c o s t   o f   l i q u i d   n i t r o g e n  makes e f f i c i en t   ope ra t ion   o f  a cryogenic   tunnel  
important. In o r d e r   t o  minimize  operating  cost ,  it is necessary   tha t   such  a f a c i l i t y  
be equipped  with  automatic   controls   which  perform  the  fol lowing  funct ions:  

(1)   Maintain  s teady  f low a t  t h e  most e f f i c i e n t   s e t t i n g   d u r i n g  tes t  dwell. 



( 2 )  Drive the   sys t em  a long   t he   mos t   e f f i c i en t   t r ans i t i on   pa th   f rom  one  steady- 
f l o w   s e t t i n g  t o  the   nex t  as q u i c k l y   a s   p o s s i b l e .  

Modern con t ro l - sys t em  syn thes i s   t echn iques   r equ i r e   t ha t   t he  dynamic process  t o  
be   con t ro l l ed   be   mode led   ana ly t i ca l ly   e i the r   i n  a d i sc re t e   fo rmula t ion  as a system  of 
d i f f e r e n c e   e q u a t i o n s   o r   i n  a c o n t i n u o u s   f o r m l a t i o n   a s  a system  of   different ia l   equa-  
t i o n s   i n   s t a t e   v a r i a b l e  form. The thermodynamic  and  fluid-dynamic  processes i n   t h e  
wind tunnel  are descr ibed by the  three-dimensional  Navier-Stokes  equations  which 
require   numerical   solut ion.  The complexity of this   three-dimensional   formulat ion i s  
beyond the  scope  of modern d is t r ibu ted-parameter   cont ro l   synthes is   t echniques ,   and  
numerical   solution  of  the  equations  requires  lengthy,  expensive  computation. Conse- 
quent ly ,   the   control-system  designer  must r e s o r t   t o  a simplified  approach,  such as 
segmentat ion  of   the  process   into a s e t  of lumped pa rame te r   s t a t ions  which may then  be 
t r e a t e d   a s  a high-order  multivariable  system  with time delays.  Because  the  accuracy 
of  such  an  approximation i s  l imi ted ,  a n e e d   e x i s t s   f o r  a dynamic  model whose accuracy 
i s  adequate  for  control-system  design  and  performance  evaluation,  but whose numerical 
so lu t ion  w i l l  execute on a d i g i t a l  computer a t   reasonable   speed   and   cos t .  The one- 
dimensional  distributed-parameter  dynamic model descr ibed   here in  i s  i n t e n d e d   t o  
s a t i s f y   t h i s  need. 

SYMBOLS 

AR 

AS 

R.r 
a 

B 

b 

CR 

c5 
CX 

cM 

C P 

2 

d i f f u s e r   a r e a   r a t i o  

p r o   j e c t e d - s t r u t   f r o n t a l   a r e a ,  m 

t e s t - sec t ion   c ros s - sec t iona l   a r ea   a t   t h roa t ,  m 2  

local  speed  of  sound, m/sec 

body force  vector   in   three-dimensional   space,  N 

= y-l ( see   eq .  (A141 

drag   coe f f i c i en t  

va r i ab le  model-blockage  flow c o e f f i c i e n t  

f l ow  coe f f i c i en t   fo r   r een t ry  mass flow 

2 

2Y 

s l o t  (plenum tes t - sec t ion)   p ressure-d i f fe rence   f low  coef f ic ien t ,  
kg-m2/N-sec 

hea t - t r ans fe r   co r rec t ion   f ac to r  

va r i ab le   de f ined   i n   equa t ion  ( 9 3 )  

a r t i f i c i a l - v i s c o s i t y   c o e f f i c i e n t -  

boundary-layer  f low  coefficient 

spec i f i c   hea t   o f  metal l i n e r ,  kJ/kg-K 

s p e c i f i c   h e a t   o f   g a s   a t   c o n s t a n t   p r e s s u r e ,  kJ/kg-K 



cV 

d 

EPL 

e 

F 

FS 

f 

G 

GN2 

H 

h 

KH 

K 6 

k 

kH 

L 

LN2 

M 

m 

m' 

N 

Npr 

NRe 

specific  heat  of  gas  at  constant  volume,  kJ/kg-K 

vector  difference  defined  in  equation (95) 

tube  diameter,  m 

difference  defined  in  equation (94 )  

plenum  internal  energy,  kJ 

internal  energy,  kJ/kg 

vector  defined  in  equation (76) 

surface  force  vector  in  three-dimensional  space,  N 

function 

vector-function  relation  of  fan 

gaseous  nitrogen 

vector  defined  in  equation (77) 

enthalpy,  kJ/kg 

total  enthalpy  of  LN2,  kJ/kg 

momentum-flow  rate  per  unit  length,  kg/sec 

diffuser loss factor 

diffuser  correction  factor  defined  in  equation (37) 

constant  defined  in  equation (45) 

thermal  conductivity  of  gas,  kJ-m/K-sec 

diffuser  correction  factor  defined  in  equation (34) 

length,  m 

liquid  nitrogen 

Mach  number 

mass, kg 

mass-flow  rate  per  unit  length,  kg/m-sec 

number  of  quantized  stations 

Prandtl  number 

Reynolds  number 
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k 
'V,n 

P 

p; 

Q 

'F 

'H 

r' H 

S 

S 

T 

TM 

t 

tM 

U 

UT 
k 
'n 

U 

V 

k 
vn 

V 

v 
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vector  defined  in  equation (96) 

static  pressure,  atm ( 1  atm = 101.1 kPa) 

corrected  total  pressure 

external  heat  flow  into  control  volume, kJ 

heat-flow  rate,  kJ/sec 

heat-flow  rate  per  unit  length,  kJ/m-sec 

heat  transfer  from  liner,  kJ/m-sec 

gas  constant,  kJ/kg-K 

constant  defined  in  equation (23) 

wall  resistance,  km3/kJ 

diffuser-inlet  equivalent  radius,  m 

fan  compression  ratio 

diffuser  pressure  ratio  defined  in  equation (33) 

corrected  diffuser  pressure  ratio 

surface  vector  in  three-dimensional  space, m 

entropy,  kJ/K 

gas  temperature, K 

liner  temperature,  K 

time,  sec 

2 

liner  thickness,  m 

velocity  vector 

heat-transfer  coefficient,  kJ/km3 

artificial-viscosity  vector 

velocity,  m/sec 

state  vector  defined  in  equation (73) 

value  of  state  vector  V  at  station 5 and  time 

specific  volume,  m3/kg 

volume,  m 3 



W 

W 

WB 

wDM 

wf 

wG 

wN 

wss 

w~~ 

X 

a 

Y 

A 

6 

6* 

E 

T)F 

28 

5 
I.L 

V 

P 

PC4 

Q 

w 

ex te rna l  work done by con t ro l  volume, kJ 

mass-f low ra te ,  kg/sec 

boundary-layer  component  of slot-flaw rate, kg/sec 

model-blockage  component  of  slot-flow ra te ,  kg/sec 

ex t r ac t ed  component of reent ry  mass-flow rate, kg/sec 

 ven vent flow ra te ,  kg/sec 

LN2-injection flaw rate, kg/sec 

supersonic component of   s lot-f low rate ,  kg/sec 

average  tes t -sect ion mass-flow rate, kg/sec 

s p a t i a l   c o o r d i n a t e ,  m 

inlet-guide-vane  posit ion,   deg 

r a t i o  of s p e c i f i c   h e a t s  

differencing  increment  

increment  used in   equat ions   (33)   and   (39)  

boundary-layer  displacement  thickness, m 

increment  used in   equat ions   (38)   and   (39)  

f an   e f f i c i ency  

to t a l   d i f fuse r   expans ion   ang le ,   r ad  

boundary-layer momentum th ickness ,  m 

coe f f i c i en t   o f   v i scos i ty ,  N-sec /m2  

fan  speed, rpn 

dens i ty ,  kg/m3 

l i n e r   d e n s i t y ,  kg/m3 

normal stress, N/m2 

c ross -sec t iona l  area, m 2 

Subscripts:  

DM model blockage 

E s lo t  e x i t  (plenum t e s t  s e c t i o n )  
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EX t e s t - s e c t i o n   e x i t  

F f a n   o u t l e t  

G G N ~  (gaseous n i t rogen)  

N LN2 ( l iqu id   n i t rogen) ;   tunnel   ou t le t ,   fo r   example ,   in   equa t ion  (74) 

ORF plenum test  sec t ion  

PL plenum 

R flow loss 

RJ3 reent ry  

S smoothing 

TS test  sec t ion  

t t o t a l   v a l u e  

xx x-component of s t r e s s  of force  

Superscr ipts :  

- average  value 

- predic ted   va lue  

A corrected  value 

Special  symbol : 

V vector   del   operator  

A dot  over a symbol denotes a der iva t ive   wi th   respec t   to   t ime.  

DEVELOPMENT OF ONE-DIMENSIONAL MODEL 

General  Assumptions 

The wind tunnel is modeled a s  a one-dimensional  tube  of  varying  cross-sectional 
a r e a ,   i n  which the  f low is assumed t o  be  uniform  across  every  cross  section. Con- 
sequently,   rotational  effects  and  mixing  caused by turns   in   the   tunnel   a re   neglec ted .  
I n  addition,  longitudinal  mixing  caused by diffusion  and  turbulence is not modeled. 
Although  viscous  shear ing  s t resses   are   neglected,   f r ic t ional  momentum l o s s e s   a t   t h e  
walls  are  included. 

Thermodynamic p rope r t i e s  are computed by means of ideal-gas  laws.  Real-gas 
e f f ec t s ,   impor t an t   a t  l o w  temperatures,  could  be  readily  included. Heat t r a n s f e r  is 
assumed t o  occur  only  between  the  gas  and  the  tunnel  inner  liner;  heat  penetration 
from the   ou te r   she l l   t h rough   t he   i n su la t ion   t o   t he   l i ne r  is neglected.  Liquid- 
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nitrogen  evaporative  effects  on  total  pressure,  which  are  observed  primarily  at  the 
lowest  temperatures,  have  not  been  considered. 

The  tunnel  fan  is  represented  as  an  algebraic  functional  relationship  with  no 
inherent  flow  dynamics.  Thus,  the  fan  model  is  instantaneous,  exhibiting  no  time 
delay.  Inlet-guide-vane  actuator  dynamics  are  included.  The  fan  model  determines 
the  functional  relationships  between  tunnel  inlet  and  outlet  flows,  which  effectively 
closes  the  tunnel  circuit. 

The plenum  is  modeled  as  a  lumped  volume  attached  to  the  distributed  test 
section. All external  processes,  including  actuators  and  automatic  controllers,  are 
modeled as lumped-parameter  dynamical  systems.  The  numerical  solution  of  the  set of 
ordinary  differential  equations  which  describe  the  lumped-parameter  processes  is 
synchronized  in  time  with  the  numerical  solution  of  the  partial  differential  equa- 
tions  of  flow.  This  synchronized  combination  of  one-  and  two-dimensional  systems  is 
well-suited  for  the  CDC  CYBER 203 vector-processing  digital  computer  (ref. 4)  on 
which  the  solutions  are  obtained. 

1 

Derivation  of  One-Dimensional  Flow  Equations 

The  three-dimensional  equations of fluid  flow  in  integral form are  applied  to  a 
differential  element  of  a  one-dimensional  tube  of  varying  cross-sectional  area  in 
order  to  derive  a  one-dimensional  system  of  partial  differential  equations  analogous 
to the  three-dimensional  Navier-Stokes  equations.  The  three  basic  conservation  laws, 
expressed  in  vector  notation  (ref. 5), are  given  as  follows: 

( 1 )  Continuity: 

1 pu dS +a at Jup d u =  0 

(2) Linear  momentum: 

pu u dS + at a pu dv = FS + B du 

(3) Energy: 

where 

P density  of  gas 

U velocity  vector of mass flow 

~~ ~ 

'CMJ:  Registered  trademark  of  Control  Data  Corporation. 
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S surface  vector  of  volume 

FS surface  force  vector 

B body  force  vector 

P static  pressure 

et 

Q external  heat  flow  into  control  volume 

W external  work  done  by  control  volume 

total  internal  energy  of  gas 

By referring  to  figure  2,  consider  an  incremental  element  of  tube  of  length  Ax 
with  flow  entering at x1 and  exiting  at  x2. 

"I A x  t- 
Figure 2. - Elemental  flow  volume u .  

The  inviscid  one-dimensional  form  of  equations (l), (21,  and (3) (ref. 6 )  is, 
respectively, 

8 



i 

and 

-(e pw) + -(e puw + puw) = 0 & t  ax t 
a a 

where w is  the  cross-sectional  area  of  the  tube  and  u  is  stream  velocity. 

Equations ( 4 ) ,  (5), and (6) are  augmented to  account  for  external mass, 
momentum,  and  heat  transfer,  respectively,  into  the  element  of  volume.  Let  m', 
j', and q' denote  mass-flow  rate,  momentum-flow  rate,  and  heat-flow  rate  per  unit 
length,  respectively,  into  the  element  of  volume.  The  surface  integral in equa- 
tion ( 1 )  f o r  conservation  of mass with  mass  flow  into  the  element  of  volume  becomes 

so that  equation ( 4 )  becomes 

Similarly,  the  addition  of  momentum  flow j' Ax and  heat  flow q' Ax into  the 
element  of  volume  results,  respectively,  in  the  equation  for  conservation  of  momentum 

-( a p u w )  + "(pu w + pw) = P dx a 2  dw + jl 

at ax 

and  in  the  equation  for  conservation  of  energy 

Equations ( 8 ) ,  ( 9 ) ,  and ( 1 0 )  are in the  form  employed  by  Carri'ere  (ref. 7 )  in a 
dynamic  analysis  of  an  injector-driven  wind  tunnel  that  was  solved  by  means  of  the 
method  of  characteristics. 

In  the  present  study,  it  is  desired to  account  for  heat  transfer  within  the  gas 
due  to  gas  thermal  conductivity.  From  Fourier's  law  of  heat  conduction,  it  follows 
that  the  rate  of  heat  transfer  through  surface S into  volume v is 

where k is  the  thermal  conductivity  and I k  denotes  the  component of heat  transfer 
due  to  gas  thermal  conductivity.  Because  gas-to-gas  heat  transfer  does  not  occur 
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The equation  for  conservation  of  energy  (eq. ( 1 0 ) )  then  becomes 

”(e ax t  puw + puw - kw E) + &(etpw) = q’ 

In  this  analysis,  it  is  desired  to  consider  the  effects  of  fluid  viscosity.  The 
normal  stress oxx for  one-dimensional  flow  is  (ref. 8) 

- 4 au 
OXX - 5 ax 

where p is the  coefficient  of  viscosity.  In  the  present  one-dimensional  approxi- 
mation,  shearing  stresses  are  neglected.  The  surface  force Fxx at points 
and x2 (see  fig. 2) due  to  normal  viscous  forces  is  of  the form x 1  

Consequently,  the  equation  for  conservation  of  momentum  (eq. (9)) then  becomes 

Empirical  momentum  losses  obtained  from  data  reported  by -0 (ref. 9) will  be 
introduced  through  the j l term. 

The  rate  of  flow  work  done at surfaces w1 and w2 by the norm1 force F~~ 
in equation ( 1 5 )  is 

The energy  equation  for  viscous  flow  with  heat  addition  and  thermal  conduction  is 

%ktpuw + puw - kw 

10 



Equations (8), ( 1 6 ) ,  and (18) comprise  the  complete  one-dimensional  partial   dif-  
ferential   equations  of  f low  that  approximate  the  three-dimensional  Navier-Stokes 
equations. 

Heat Transfer  Between Gas and  Tunnel Wall 

The one-dimensional  time-dependent  equations  of  flow  developed i n   t h e   p r e c e d i n g  
sec t ion   inc lude   gas- to-gas   hea t - t ransfer   e f fec ts .  It w i l l  be  found t h a t   h e a t   t r a n s -  
f e r  between the   gas   and   t he   she l l  of t h e  tube, corresponding t o  the  wind-tunnel metal 
l i n e r ,  i s  of  primary  importance. Let t h e   r a t e  of h e a t   t r a n s f e r   f r o m   t h e   l i n e r  t o  t h e  
gas   ( in   jou les   per   second  per   un i t   l ength)   be   denoted  by q i ,   the   meta l   t empera ture  
by TM, the  gas   temperature  by T, and   t he   hea t - t r ans fe r   coe f f i c i en t  by UT. For  an 
annulus   o f   tube   o f   d iameter   d ,   the   hea t - t ransfer   ra te  is  

A n  e m p i r i c a l   r e l a t i o n s h i p   f o r  UT given by McAdams ( r e f .  1 0 )  i s  

. 
" 
" 

0.026 - k '0.8 0 . 4  + % 
d N R e  NPr 

where 

k thermal  conductivity of gas 

NRe Reynolds number 

Npr Prandt l  number 

Rw wal l   r e s i s t ance  

It has  been  found  that  a hea t - t r ans fe r   co r rec t ion   f ac to r  CR i s  necessary t o  account 
fo r   t he   add i t iona l   su r f ace   a r ea   i n   t he   nace l l e   and   t u rn ing -vane   s ec t ions .  The f a c t o r  
i s  employed a s  a m u l t i p l i e r  so tha t   equa t ion  ( 1 9 )  becomes 

q; = nd(T - T ) U  C M T R  

Consider   next   the  tunnel   inner- l iner   temperature   dynamics.   Heat   t ransfer   f rom 
the   l i ne r   t o   t he   gas   occu r s   i n   acco rdance   w i th   equa t ion  ( 2 1 ) .  Iateral h e a t   t r a n s f e r  
w i th in   t he   l i ne r   f rom warmer t o  coolEr  regions i s  neglected.  Consequently,  the rate 
of change  of  the  l iner  temperature is  

TM 

1 1  



where % is the  specific  heat  of  the  liner  material  and 

where 43 is the  liner  density  and is  the  liner  thickness.  Equation  (22)  is 
employed as the  governing  equation  for TM. 

ESTIMATION  OF  FLOW  LOSSES 

Introduction  of  Losses  Into  Equations  of  Flow 

In  the  one-dimensional  equations  of  flow,  the  viscous  shear  effects  at  the 
tunnel  walls  are  neglected.  However,  frictional  effects,  especially  in  the  test 
section  and  diffuser  section  of  the  wind  tunnel,  are  significant  and  must  be 
accounted  for.  According  to Rao (ref. 9), nearly 60 percent  of  the  total  aerodynamic 
loss at  Mach 1 occurs  in  these  two  sections.  Since, of course,  energy is conserved 
in  the  test  section  and  diffuser,  the  "total  energy loss" to which Rao refers  is  a 
loss in  available  energy,  which  is  manifested  as  an  increase  in  entropy.  The  entropy 
gradient  at  steady  flow  ds/dx,  obtained  in  the  appendix  in  equation  (A23),  is  given 
by 

c 

Because  of  the  assumption  that  the  tunnel  liner  is  perfectly  insulated,  external 
heat  transfer  q'  equals  zero  for  steady  flow.  Furthermore,  mass  transfer  term  m' 
is.zero everywhere  except  for  GN2  and  LN2  transfer.  Therefore,  the  increase  in 
entropy  must  be  due  entirely  to  a  momentum loss j' so that 

j l  < 0 (25) 

The  steady-flow  expression  for  the  gradient  of  total  pressure  given  in  equation (A18) 
is 

With  m'  and q' both  zero,  equation  (26)  becomes 
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and  because jl is  negative,  dpt/dx  is  negative. Rao (ref. 9) furnishes  empirical 
relations  for  determination  of  total-pressure  losses  in  the  test  section,  in  diffuser 
sections,  at  turning  vanes,  at  cooling  coils,  and  in  the  strut  section  of  the  NTF 
wind  tunnel.  With Rao's relations,  dpt/dx  can  be  determined,  and j' may  be 
obtained  from  equation (27) for  each  of  the  tunnel  sections as 

Y 

where  (dpt/dx)R is  the  total-pressure  gradient  due to flow  losses  obtained  from 
Rao's relations.  This  value  of jl is entered  into  the  dynamic  equations for 
unsteady  flow,  and  dynamic  effects in jl are neglected. 

Calculation  of  Diffuser  Losses 

Total-pressure loss Apt along  the  length  of  a  diffuser is given  empirically  by 
the equation  (ref. 9) 

where 

AR diffuser  area  ratio 

K diffuser loss factor 

Pt, 1 total  pressure  at  inlet 

P1 static  pressure  at  inlet 

Pt, 2 total  pressure  at  outlet 

Studies by Rao (ref. 9) and  Henry  et  al.  (ref. 11) show  that  for  values  of 
total  diffuser  expansion  angle  28  lying  between 4 O  and loo, the  diffuser loss 
factor K depends  on  the  ratio  of  the  inlet  boundary-layer  displacement  thickness 
6* and  the  diffuser-inlet  equivalent  radius  R1.  For  values  of  6*/R1  less  than 
0.030, K is  well  approximated  by  the  relationship 

K = 0.075 + 5.88 - 6* 

R1 

Substitution  of  equation (30)  into  equation  (29)  gives 



Figure 3 shows a comparison  of   the  diffuser   pressure  ra t io  

1.10- 

1.08 . 

0 Measured  values 
Computed curve 

0 .2  .4 .6 .8 1.0 

Mach  number 

Figure 3.-  Comparison of computed  and  measured d i f fuser   p ressure  loss i n  
the  Langley 0.3-Meter Transonic  Cryogenic  Tunnel. 

computed by using  equation  (31),   with  experimental   values  obtained by Rao ( r e f .  9 )  
i n  the  Langley 0.3-Meter Transonic  Cryogenic  Tunnel  over  the Mach number range  from 
0.2 t o  1.0.  Agreement i s  good  up t o  a Mach number of 0 .8 ,  above  which the  computed 
values  of rH are too  small. The r a t i o  rH, be ing   near ly   equal   to  1.0, may be 
expressed by 

r = 1 + 6  
H 

where 6 is a small   incr  
data.  Because  the  values 
t i o n   f a c t o r   t o  be appl ied 

(33)  

ement  and 0 < 6 < 0.061, a s  computed  from the  experimental  
of rH computed by equation  (32) are too small, a correc- 
t o  rH can  be  defined as 
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I' 

where is  the corrected va lue   o f   t hus   g iv ing  a corrected d i f fuser  pres- 
s u r e  r a t lo  

p i ,  2 

The c o r r e c t e d  pressure d i f f e rence   can  be expressed as 

4?; = P i I 2  - P t ,  1 (36) 

The r a t io  of Api t o  Apt d e f i n e s  a correction factor s. From equa t ions   (29 ) ,  
(32 ) ,   (35 ) ,   and   (36 ) ,  it follows t h a t  

% p;,2 - P t , l  - 
5 4  "= *pt   P t ,2   P t ,  1 

(l/r;) - 1 1 - ( l/kH) 

( l/rH) - 1 r - 1  - - = 1 +  
H 

Because is  s l i g h t l y  greater than  1, l e t  

1 - =  

kH 
1 - - E  

S u b s t i t u t i n g   e q u a t i o n s   ( 3 3 )   a n d   ( 3 8 )   i n t o   ( 3 7 )   g i v e s  

(37 )  

for   Values   o f  M > 0.6 .   Correc t ion   fac tor  % equals  1.0 f o r  M < 0.6.  The corn- 
pu ta t ions   o f  E, 6 ,  and KH f r o m   t h e   d a t a   o f   f i g u r e  3 are summarized i n  table  I. A 
second-degree  polynomial, f i t  t o  t h e   v a l u e s  of obta ined  as  a f u n c t i o n  of M 
f o r  M > 0.6, i s  

KH z 1.0 + 1.375(M - 0.6) 2 

TABLE 1.- CORRECTION  FACTOR OF DIFFUSER  PRESSURE  RATIO 

~~ 

M KH EJ 1.0 + 1.375(M - 0.6) KH 1.0 + ( ~ / 6 )  E kH 6 'H 
2 

0.6 

1.12 5.15 -0076 1.0076 -052 1.052 -9 
1.06 1.07 e0029 1.0029 - 0 4 2  1.042 -8 
1 .oo 1 .oo 0 1.0 0.025 1.025 

1.0  1.061 -061 1.0132 1.22  1.22 -0132 
_" ~ " - 

1 5  



which  is  tabulated in  the  final  column  of  table I. Thus,  pt is computed  empiri- 
cally  by  the  relation  obtained  from  equations (31), (36), and (37) as 

r v l  
Y-1 2 

= %P1 1(1 + Mz) - 1J (1 - 5) (0.075 + 5.88 g) 
R 1 

where % is  obtained  from  equation (40). 

The value  of 6*/R1 is  required  as  a  function  of  Mach  number M and  Fteynolds 
number  NRe.  Shapiro  (ref. 12) obtains 6*/8, as  a  function  of M where e l  is 
defined  as  the  momentum  thickness of the  boundary  layer  entering  the  diffuser. A 
curve  of 6*/8, as  a  function  of  M,  denoted  by  fZ(M),  is  shown  in  figure 4 for 
values  of M lying  between 0 and 1.2. Rao (ref. 9) estimates el by  the  relation 

'TS 8 = -  
1 2 % 

0 .2  .4 . 6  .8 1.0 1.2 1.4 
Mach number 

Figure 4.- Variation of f2 with  Mach  number. 
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where $s is the test-section length and CD  is the drag  coefficient for turbulent 
flow past an insulated  flat plate. Shapiro (ref. 12) gives CD  as a  function of 
Mach number and  Reynolds  number as 

An expression for 6* as a  function of Mach number and Reynolds number can be 
obtained as 

6* = 0 f (M) = K  f (MI 
1 2   6 3  

(44) 

where 

and 

Values  for f2(M)  and  f3(M) are given in table I1 and  appear as curves in fig- 
ures 4 and 5. A second-degree polynomial fit to f3(M), denoted by f4(M) and 
tabulated in the rightmost  column of table 11, is 

f (M) = 1.286 + 0.305M 2 
4 

The curves for  f3(M) and  f4(M) coincide in figure 5. 

TABLF: 11.- FLOW-LOSS RELATIONS AS FUNCTIONS OF MACH NUMBER 

M 

0 
.2 
.4 
e 6  

-8 
1.0 
1.2 

1.286 
1.304 
1.358 
1.447 
1.573 
1.734 
1 930 

1 286 
1 299 
1.338 
1.401 
1-487 
1 593 
1.715 

1.286 
1 298 
1 335 
1 396 
1.481 
1.591 
1.725 

(47) 
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.98 

.96 

94 

92 

.90 

.88 

.86 
0 .2 .4 .6 .8 1.0 1.2 1.4 

Mach number 

Figure 5.- Variation  of  f3  and  f4  with  Mach  number. 

For  the  second-  and  third-leg  diffusers  and  the  rapid  diffuser  in  the  NTF, R ~ O  

(ref. 9) obtains  a  constant  diffuser loss factor K of 0.32. In  these  locations, 
equation  (3 1 )  simplifies  to 

The  portion  of  the  fan  nacelle  beyond  the  fan  location  is  an  annular  diffuser  whose 
total-pressure loss is  computed  by Rao for  a  constant  drag  coefficient CD to be 

where CD = 0.158. 

( 4 9 )  

Losses  at  turning  vanes,  cooling  coils,  and  screens  are  also  obtained  by  using 
equation (49) ,  where  values  of CD are  given  as  follows: 
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Location  of loss 

Turning  vanes 0.027 
Cooling  coils 
Screens 

Pressure loss at  the  strut,  also  obtained  from  equation ( 4 9 ) ,  is weighted  by  the 
ratio  of  projected  strut  frontal  area AS .to  test-section  cross-sectional  area +, 
thus  giving 

where  CD = 0.027. Pressure  losses  due to the  model  and  sting  are  computed  similarly 
as  a  function of angle  of  attack. 

In  each  aforementioned  case,  the  total-pressure loss at  each  diffuser  or  con- 
stricting  element  is  uniformly  distributed  along  its  length  to  obtain  a  value  for 
(dPt/dx)k to be  used  in  equation (28). 

SLOTTED-TEST-SECTION  DYNAMICS 

The  flow  processes  occurring  within  the  slotted  test  section  and  plenum  of  a 
transonic  wind  tunnel  are  not  understood  well  enough to permit  construction  of an 
accurate  dynamic  model.  It is  clear  that  the  process  is  asymmetric  and  three- 
dimensional  with  sharp  gradients  and  finely  detailed  flow  patterns. An adequate 
time-dependent  model  would  require  a  three-dimensional  analysis  with  a  finely  spaced 
grid,  which  would  require  lengthy  execution on  a  high-performance  digital  computer 
for solution.  Such an analysis  has  not  been  attempted in  the literature as of  this 
writing. 

In  this  study,  a  one-dimensional  approximation  to  slotted-test-section  dynamics 
is  adapted  from  a  lumped  model  of  the NTF slotted-test-section  dynamics  developed  by 
Gumas.  (See  ref. 13. ) The  test  section  is  divided  into  an  exit  region  (from  which 
slot  flow  exits  into  the  plenum)  which  is  followed  by  a  reentry  region  (where  flow 
reenters  the  test  section  from  the  plenum).  Slot  exit  flow  is  considered  by  Gumas 
to  consist  of  three  components  caused  by  boundary  layer,  model  blockage,  and  super- 
sonic  effects.  Let  the  lumped  exit  and  reentry mass flows  of  Gumas  be  distributed 
along  their  corresponding  regions.  The  plenum  is  considered  to  be  a  lumped  volume 
with  static  plenum  pressure  uniformly  distributed  along  the  exit  and  reentry  regions 
of  the  test  section,  in  contrast to the  treatment  by  Gumas  of  the  test-section- 
plenum  combination  as  a  single  lumped  volume  at  uniform  pressure.  This  separation  of 
a  lumped  plenum  from  a  distributed  test  section  introduces  another  component  of  slot 
mass  flow  proportional to the  difference in static  pressure  between  test  section  and 
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plenum n o t   i n c l u d e d   i n   t h e   f o r m l a t i o n   o f   r e f e r e n c e  13. The performance  of  the  model 
fo r   t he   subson ic  case using  these  assumptions is  s a t i s f a c t o r y ;  however,  above 
Mach 1.0 it is  less successful ,   having a tendency  toward  numerical   instabi l i ty .  

- Test section - 
Throat Strut Diffuser 

L Plenum 

Figure 6.- Slo t t ed  test sect ion  and plenum. 

A diagram  of   the  throat ,  t e s t  sect ion,   and plenum reg ions   appea r s   i n   f i gu re  6. 
Let WE d e n o t e   s l o t   e x i t  ( t e s t  s e c t i o n  t o  plenum) mass flow  which, as mentioned 
be fo re ,   acco rd ing   t o   t he  Gumas model cons i s t s   o f   t h ree  components: 

( 1 )  The boundary-layer component p ropor t iona l   t o   t h roa t   f l ow:  

w = c  w 
B XM T H  ( 5 1 )  

( 2 )  The model-blockage  component, a l so   p ropor t iona l   t o   t h roa t   f l ow  and   dependen t  on 
angle  of a t t ack :  

w = c  
DM D M X ~ T H  

( 3 )  The supersonic component, when %s > 1.0: 

w ss = [("3 - ~ 1 + M 0.2MTS TS 2 + A T E  
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where 

w~~ 

%S 

Pt 

Tt 

sr 
cm 

CDMX 

average  test-section  mass-flow  rate  in  throat  region 

average  test-section  Mach  number  in  throat  region 

total  pressure 

total  temperature 

test-section  cross-sectional  area  at  throat 

boundary-layer  flow  coefficient 

variable  model-blockage  flow  coefficient 

The  additional  pressure-difference  flow  component  wow  is  computed as 

where 

pTS 
- average  static  pressure  over  exit-reentry  portion  of  test  section 

plenum  static  pressure 

slot  (plenum  test-section)  pressure-difference  flow  coefficient 

PPL 

Total  slot-exit  flow wE is  then 

w = w   + w  + w  + w  E B DM ss O W  (55) 

Note  that  if  the  plenum  pressure  is  sufficiently  greater  than  the  test-section  static 
pressure,  wF  will  be  negative.  Slot  exit  momentum  flow j, and  heat-energy  flow 
qE are  obtalned  from  wE  as 

where UTs is  the  average  test-section  stream  velocity in the  exit  region  and 

qE - 

h 
- (57) 
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where 

hTS = c T 
P TS 

hPL p PL 
= c T  

and TpL is the  plenum temperature. 

Reentry mass flow wm is  computed  from t w o  components: ( 1 ) An ext rac ted  
component p ropor t iona l   t o   t e s t - sec t ion   ex i t   f l ow 

w = - c w  f f EX 
(60) 

where wEx is the  average  tes t -sect ion mass flow in   the   reent ry   reg ion;   and  ( 2 )  t h e  
pressure-difference  f low component wORF. Hence, t o t a l   r e e n t r y   f l o w  wm is  

w = w  "w 
RE f ORF 

Reentry momentum flow  and  energy  flow are treated ana logous ly   in   ' r egard   to   s lo t -ex i t  
flow. The dynamic s t a t e   e q u a t i o n s   f o r  plenum mass and  internal   energy,   respect ively,  
a r e  

0 

mpL = wE + wm 

and 

where 

(WREhPL 

' -=\ .  RE h TS 

(62) 

Plenum temperature TpL is given by 

TpL = E /c m PL v PL 
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BOUNDARY  CONDITIONS 

GN2  Venting  and  LNz  Injection 

Next,  consider  the  external mass, momentum,  and  energy  transfer  caused  by  gas 
venting  and  liquid-nitrogen  injection.  Let  the  vented-gas  mass-flow  rate  be  denoted 
by  wG,  and  let  the  influent  mass-flow  rate  per  unit  length be mh.  Assume  uniform 
venting  over  length LC so that m& is given  by 

m' = -w /L G G G  

The  influent  momentum-flow  rate  per  unit  length jC; is  then 

jh = m'u = -w U/L G G G  

where  u  is  the  local  stream  velocity  at  the  vent. 

Finally,  the  influent  heat-flow  rate  per  unit  length q&  is 

q& = m'h = -w  h&LG G G  G 

where  hG,  the  local  total  enthalpy,  is  given  by 

1 2  
hG p 2 = c T + - u  

(66) 

Corresponding  equations  for  liquid-nitrogen  injection  can  be  obtained.  Let  wN 
denote  LN2-injection  flow  rate  (in  kilograms  per  second)  occurring  uniformly  over 
length $. Influent  mass-flow  rate  per  unit  length  denoted  by "r; is  then 

m' = w /L N N N  

Because  the  injected  liquid  nitrogen is assumed  to  have zero stream  velocity at  the 
point  of  injection,  influent  momentum-flow  rate  per  unit  length j& is 

jk = 0 

Finally,  influent  energy  per  unit  length  is  given  by 

where $ is the  total  enthalpy  of  liquid  nitrogen.  The  value  used for $ is 
-115.9 kJ/kg. Instantaneous  vaporization  and  perfect  mixing  are  assumed. 
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NTF-Fan  Simulation 

A one-dimensional  approximation  to  the  NTF  fan-flow  process  has  been  adapted  by 
Gumas  (ref. 13) from  a  three-dimensional  fan  model.  In  the  approximation  by  Gumas, 
fan  volumes  are  assumed to be  insignificant  relative  to  the  tunnel  volume;  mass, 
momentum,  and  energy  relations  between  fan-inlet  flow  and  fan-outlet  flow  are  assumed 
to be  algebraic  functions  dependent  on  fan  speed v and  inlet-guide-vane  position 
a. Thus,  the  fan  model  has  no  intrinsic  dynamics.  Inlet-guide-vane  actuator 
dynamics  are  modeled  as  a  second-order  linear  dynamical  system.  Fan-drive  dynamics 
are  not  included  in  the  present  model  because  constant  fan  speed  is  assumed. 

The functional  relations  between  f  an-inlet  and  f  an-outlet  flows  established by 
the  Gumas fan  model  establish  the  relation  between  the  outlet  and  inlet  flows  of  the 
closed-return  wind  tunnel.  This  can  be  represented  formally  as  a  vector-function 
equation.  In  this  solution,  let  V  denote  the  vector  of  three  independent  flow 
properties 

where  subscripts 1 and N denote  tunnel  inlet  and  tunnel  outlet,  respectively. 
Also,  let G be  the  vector  function  representing  fan-outlet  flow  as  a  function of 
fan-inlet  flow,  fan  speed,  and  inlet-guide-vane  position.  Then,  the  relation 
between V1 (the  vector  of  tunnel-inlet  flow  properties)  and VN (the  vector  of 
tunnel-outlet  flow  properties)  is  expressed  by 

The  relationships  symbolized  by  vector  function  G  and  its  inverse  G-l  determine 
the  boundary  conditions  at  the  ends  of  the  one-dimensional  tube.  Functions G and 
G-’  are  evaluated  numerically  by  means  of  a  computer  subroutine. 

NUMERICAL  SOLUTION  OF  FLOW  EQUATIONS 

Equations (8), (16), and (18)  are  solved  numerically  to  obtain  a  time-dependent 
solution  of  the  wind-tunnel  flow  process.  For  notational  convenience,  these 
equations  are  written  in  conservation  form  as 

a V(x,t) + & F(x,t) + H(x,t) = 0 

where 

UL 

F =  
2 pu w + pw - 4 aU 

Z W G  

e puw + puw - kw - - - aT 4 aU 
t ax 3 puw 

(75) 
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and 

H =  (77) 

A second-order  explicit  predictor-corrector  method  developed  by  MacCormack 
(ref. 14) is  employed  to  obtain  a  numerical  solution  to  equation ( 7 5 ) .  In  this 
method,  let  the  length of the  tube  be  divided  into N equal  segments  of  length Ax 
and  let  Ati  denote  the  time  increment  at  the  time  step i. Let  the  diacritical 
marks .. and  denote  predicted  and  corrected  values,  respectively,  of  the 
variables.  Let  subscript  n  denote  the  values  of  the  variables  at  station x, 
where 

x = n A x  (n = 0, ..., N) n 

and  let  superscript  k  denote  the  values of variables  at  time  tk  where 

k 

i= 1 

so that  the  predicted  value is 

and  the  corrected  value  is 

(k = 0, 1, 2, ... ) 

MacCormack's  method  (ref. 14) proceeds  as  follows  for  n = 2, 3, ..., N-1: 

( 1) Predictor  step: 

(2) Corrector  step: 

(79) 
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(3) Update  step: 

Because  partial  derivativss  occur  in  vector  function  F,  additional  differencing 
is  necessary  within Fk and Fk. In  MacCormack's  formulation,  these  derivatives  are 
written,  respectively,  as 

f 'nun  "'n 

and 

f " 

PnUn W, 

The  wind  tunnel  is  a  closed-return  tube  driven  by  a  fan. As discussed  previ- 
ously,  the  fan  is  represented  by  a  vector-function  relation G between  vectors VN 
and VI so that 

From  stations % to xl, the  predictor-corrector  steps  are  the  following: 

(1) Predictor  step: 
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( 2 )  Corrector  step: 

( 3)  Update step : 

where G-l denotes  the  inverse  of  vector  function G. 

The time  increment A t  is recomputed a f t e r  each  time step wi th   the   re la t ion  

0.9 ax 
max ( tu1 + a )  

A t  = 

where a is the   loca l   speed  of  sound  and max denotes maximum value. 

Above a Mach number of 1.0, shocks form i n   t h e  test sec t ion  and  produce  rapid 
numerical  changes  which  can lead t o   c o m p u t a t i o n a l   i n s t a b i l i t y .   A r t i f i c i a l   v i s c o s i t y  
is  in t roduced   in to   the   computa t ion   to  smooth the   shock   d i scon t inu i ty   t o  a continuous 
change  over  several   spatial   increments.  In t h e   p r e s e n t   t r e a t m e n t ,   a n   a r t i f i c i a l -  
viscosity  computation method furnished by Turkel   ( ref .   15)  i s  used.  In t h i s  method, 
the  fol lowing  funct ions of t i m e  s t e p  k and   spa t i a l   i ndex  n are de f ined   a s  

The a r t i f i c i a l - v i s c o s i t y   v e c t o r  #+', given by n 

&+I = p k k 
n - P  

V,n  V,n-1 (97) 
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is  added 
smoothed 

t o  the  updated 
s t a t e   v e c t o r  

= Sc+l n 
S 

N o  smoothing is  done a t  

The aforementioned 

s ta te  vector  $+l,   given i n   e q u a t i o n  (84)  I t o  y i e l d   t h e  
n 

+ $” 
n (n = 2 ,  ..., N-1) 

stations  x1  and  xN- 

numerical   application  of  Madormack’s predictor-corrector 
method has  been  implemented  on a CDC CYBER 203 d i g i t a l  computer. (See r e f .  4 by 
Lambiotte  and Howser. ) Vector equations  (82)  and  (84) are we l l - su i t ed   fo r   vec to r i za -  
t i o n  on t h i s  computer  because  each  vector-addition  and  vector-multiplication  opera- 
t i o n  i s  performed by a s ing le   mach ine   i n s t ruc t ion   fo r   vec to r s  of l eng ths   up   t o  
64 000 elements. For t h e  NTF model, the  x-coordinate  i s  d i v i d e d   i n t o  512 segments. 

Because  each  of  the  three  elements  of  vector vk f o r  n = 2 through 51 1 i n  equa- 

t ions  (82)   through  (84)   undergoes  the same ar i thmet ic   opera t ion ,  a s i n g l e  machine 
i n s t r u c t i o n  i s  s u f f i c i e n t   t o   p e r f o r m   t h e   a r i t h m e t i c   o p e r a t i o n  on t h e   e n t i r e  set  of 
1530 e lements   re fe renced   in  vectors V2 through V511* &Para te   opera t ions  are 
needed a t   s t a t i o n s  1 and 512 as given  In   equat ions  (86)   through  (9   1) .  However, t h e  
e l imina t ion  of 1530 s e p a r a t e   a d d i t i o n   o r   m u l t i p l i c a t i o n   i n s t r u c t i o n s   f o r   e a c h   v e c t o r  
add i t ion   o r   mu l t ip l i ca t ion   ope ra t ion   i n   equa t ions   (82 )   t h rough   (84 )  , along  with  loop- 
c o n t r o l   i n s t r u c t i o n s ,   r e s u l t s   i n  a s igni f icant   reduct ion   in   comput ing   t ime.  

n 

The proport ion of s c a l a r  t o  vec to r   ope ra t ions   i n  a program  determines  the  extent 
of speedup  over a s e r i a l  program.  Because the   so lu t ion  of the   bas i c   equa t ions   o f  
flow i s  highly  vector ized,  a speedup  factor  of 50 t o  60 is  r e a l i z e d   f o r   t h e   p o r t i o n  
of the  program  corresponding t o  equations  (82)  through  (84).  However, because  simu- 
l a t i o n  of the  actuator   and  feedback-control   dynamics  used  in   the  present   s tudy i s  no t  
v e c t o r i z a b l e ,   i n c l u s i o n   o f   t h o s e   f e a t u r e s   r e s u l t s   i n  a larger   proport ion  of   nonvector  
operat ions.  The comple te   s imula t ion ,   inc luding   ac tua tors   and   cont ro ls ,   requi res  a n  
average 0.006 s e c  of  machine execut ion   t ime  per   s imula ted   t ime  s tep  A t .  The value 
of h i s  0.295 m. From equat ion   (92) ,  it fo l lows   t ha t  

0 e266 
A t  = (99) 

max ( iu l  + a)  

A typ ica l   va lue   o f  A t  a t  a Mach number of  0.8  and to t a l   t empera tu re   o f  333 K i s  
0.0004 sec.  Thus,  simulation of 1 sec of  tunnel-control  dynamics  requires  approxi- 
mately 15 sec on   t he   cen t r a l   p rocess ing   un i t  (CPU). A t  lower Mach numbers and t e m -  
pe ra tu re s ,  A t  becomes larger.  For  example, a t  a Mach number of  0.8  and  tempera- 
t u re   o f  167 K, A t  i s  0.0005,  and 12 CPU s e c   a r e   r e q u i r e d   f o r   e a c h  simulated tunnel  
second. I n  simulations  of  the  Langley 0.3-Meter Transonic  Cryogenic  Tunnel, 256 seg- 
ments were used,  which  reduced  execution times by a f ac to r   o f  4 over   t ha t   r equ i r ed  
for   s imula t ion   of   the  NTF wind  tunnel. 

INITIAL CONDITIONS 

In i t ia l   s teady-f low  condi t ions  are obtained by integrat ion  of   the  s teady-f low 
equations  (Al)  through (A3) of  the  appendix  with  an Adams method. (See r e f .  16 by 
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Hindmarsh.)  Generally, some combination  of  steady-flow i n i t i a l   v a l u e s   o f  Mach  num- 
ber ,   to ta l   t empera ture ,   and  t o t a l  pressure  a t  t h e  test  s e c t i o n   a r e   d e s i r e d .  However, 
values  of s ta te  var iab les   can   be   spec i f ied   on ly  a t  t h e   t u n n e l  i n l e t ,  a long  with 
GN2-vent f l o w   r a t e  wG and  LN2-injection  flow rate wNo A t  steady  f low it i s  seen 
t h a t  wG must  equal wN. Furthermore, the   va lues  of wG and wN must   be  such  that  
fan  work added t o   t h e   e n t h a l p i e s  removed  by LN2 in jec t ion   and  GN2 Venting  equals 
zero.  Thus,  values of tunnel - in le t  s ta te  va r i ab le s  must  be  selected  which w i l l  pro- 
duce a tunnel   energy  balance  and  the  required  values  of M ,  Tt, and  pt i n   t h e   t e s t  
sect ion.  

It i s  convenient t o  employ Tt as an  indicator   of   energy  balance a t  the   fan .  
It can  be shown t h a t  for  steady  f low, T~ remains   cons tan t   a long   the   tunnel   c i rcu i t  
except a t  t h e  LN2 spray   bar   and   across   the   fan .   Fan-out le t   to ta l   t empera ture  is 
given by 

where 

rF 

VF 

Tt ,N 

Because 

y-l 

(rF - I ) T t . N  - .  

fan  compression  ra t io  

f a n   e f f i c i e n c y  

f an - in l e t   t o t a l   t empera tu re  

% is known and rF is  computed  from t h e  ra t io  of t o t a l   p r e s s u r e s  

r =  
F Pt, I’Pt,N 

( 1 0 0 )  

( 1 0 1 )  

where pt,N deno tes   t unne l -ou t l e t   t o t a l   p re s su re   and  pt denotes   tunnel- inlet  
t o t a l   p r e s s u r e ,  Tt,F can  be computed  from the   in tegra te6   so lu t ion   of   equa t ions  (A1 1 
through  (A3).  Thus, a p r o c e d u r e   f o r   o b t a i n i n g   i n i t i a l   c o n d i t i o n s  i s  as   fol lows:  
( 1) Select values  of p l ,  u l ,   and wG; ( 2)  in tegra te   equa t ions   (Al )   th rough 
(A31 ; and  (3)  compute MTS, pt ,TS, Tt ,TS,  and Tt,F. Since, a t  steady  f low, Tt,F 
must  equal Tt, 1, by means  of some type  of  organized  search  procedure,   such  as a 
g rad ien t  method, update p 1, u l ,  et, 1, and wG and i terate  u n t i l  Tt, equals  

e t , l  

T t , l  and %St Pt,TS* and T t , T S  equal   the   requi red   va lues .  

SIMULATION STUDIES 

The Langley  0.3-*ter  Transonic  Cryogenic  Tunnel 

The  Langley  0.3-Meter  Transonic  Cryogenic  Tunnel  (0.3- TCT) has  previously  been 
simulated by  means of a hybrid dynamic  model by Thibodeaux  and  Balakrishna. (&e 
ref 17. ) Although t h e   s c a l e s   a n d  dynamic time constants   of  the NTF and 0.3-m TCT 
f a c i l i t i e s   d i f f e r  by an  order of  magnitude, Mach nunber,   temperature,   and  pressure 
ranges are comparable.  Table I11 lists pa rame te r s   fo r   t he  0.3-m TCT and   the  NTF. 
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TABLE 111. - PARAMETERS  FOR THE 0.3-m TCT AND THE NTF WIND TUNNEL 

Parameter 

Tes t - sec t ion  area, m 
Tunnel c i r c u i t   l e n g t h ,  m ... 
Tunnel  volume, m 
Plenum  volume, m 
Mass of l i n e r ,  kg .......... 
Temperature  range, K ....... 
Mach number range .......... 
Maximum Reynolds number 

per 0.25 m ............... 
C i r c u i t  t i m e ,  sec: 

2 ...... 
3 
3 
.......... .......... 

Pressure  range,  atm ........ 

M = 1, T = 300 K ........ 
M = 0.2,  T = 100 K ...... 

Wind tunne l  

0.3-m TCT 

0.124 
21.7 

14 
0 680 
3200 

8 0  t o  325 
1.1 t o  6.0 

0.2 t o  0.98 

9 0  x 106 

0.6 
3.0 

.. 

NTF 

6.25 
151.2 
5597 
907 

465 000 
78 t o  340 

1.0 t o  9.0 
0.2 t o  1.2 

120 x lo6  

4.8 
24 

Fur the rmore ,   t he   bas i c   c i r cu i t   geomet r i e s  are similar, boundary  interfaces  are of t h e  
same type,   and  the  fans ,  GN2 vents,   and LN2 spray bars are i n   t h e  same r e l a t i v e   p o s i -  
t i o n s   i n   t h e  0.3-m TCT ( f ig .   7 )   and   i n   t he  NTF wind tunnel   ( f ig .   1) .   Because  of  
reduced  computer  execution times r e q u i r e d   f o r   t h e  smaller 0.3-m TCT, p re l iminary  s i m - .  
u l a t i o n   s t u d i e s  were performed  using 0.3-m parameters and a simplified f a n  repre- 
s e n t a t i o n   i n   t h e  model. Some t y p i c a l   r e s u l t s   o f   t h e s e   s t u d i e s  are now descr ibed.  

GNZ vent LN2 injection 

Figure 7.- Schematic  diagram  of  Langley 0.3-Meter Transonic  Cryogenic  Tunnel. 

Pulsed  upsets   of   3-sec  durat ion  in   fan  compression  ra t io ,  GN2-vent flow rate,  
and LN - inject ion  f low rate from  steady-flow  conditions  have  been  simulated.  Because 
f a n  drlve and  valve  actuator  dynamics were n o t   i n c l u d e d   i n   t h i s  0.3-m s imula t ion ,  
these   upse ts  are represented  as idea l i zed   r ec t angu la r   pu l se s ,  which r e s u l t   i n   t h e  
flow  responses shown i n   f i g u r e s  8, 9, and 10. Computed responses  t o  a 3-sec  pulsed 
decrement in   f an   compress ion   r a t io   appea r   i n   f i gu re  8 a t  277 K, 5 a t m ,  and Mach 0.69. 
The  computed responses ,  which show temporary decreases i n   t o t a l   t e m p e r a t u r e ,  t o t a l  
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Figure 8.- Computed  response of 0.3-m TCT to fan  compression-ratio upset. 
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Figure 9.- Computed response of 0.3-m TCT t o  vent-flow  upset.  
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pressure,  and  Mach  number,  are  very  nearly  rectangular  because  of  the  omission  of 
actuator  dynamics.  Figure 9 contains  the  computed  responses  to  a  3-sec  pulsed  incre- 
ment  in  GN2-vent  flow  at 277 K, 5 atm,  and  Mach 0.7. 

Figure 10 shows  the  computed  responses to  a 3-sec  pulsed  increment  in  LN2  flow 
at approximately  224 K, 2.1 atm,  and  Mach 0.67. These  responses  show  an  initial 
rapid  decrease  in  total  temperature  followed  by  a  slower  recovery.  Total  pressures 
exhibit  a  very  small  initial  drop  followed  by  a  sizable  increase.  Mach  numbers  show 
a  pulsed  increment  during  the  LN2  pulse  followed  by  quick  recovery  to  the  original 
value.  The  computed  temperature  response  exhibits  temperature  fronts  which  propagate 
at  stream  velocity  as  predicted  theoretically.  Temperature  fronts  were  not  observed 
experimentally  in  the  0.3-m  TCT  in  tests  which  employed  thermocouple  temperature 
transducers  with  time  constants  of  approximately 0.5 to 1.0 sec.  Additional  tests 
employing  faster-response  thermocouples  are  planned  as  of  this  writing. 

The  computed  temperature  fronts  decay  after  3  to 4 tunnel  circuit  times  because 
of  heat  transfer  between  the  gas  and  the  tunnel  liner.  Without  gas-to-liner  heat 
transfer,  the  amplitude  of  the  steps  would  not  be  attenuated  with  time. 

Temperature  fronts  have  been  observed  experimentally  in  the T'2  cryogenic  wind 
tunnel  at  the  Toulouse  Research  Center,  Toulouse,  France.  (See  ref. 2 by  Blanchard, 
Dor,  and  Breil.)  The  fronts  seen  at  Toulouse,  induced  by  a  step  change  of  -36  per- 
cent  in  LN2  flow,  were  observed  to  propagate  at  stream  velocity.  They  had  decayed 
after  two  tunnel  circuits,  and  the  leading  edges  had  become  longitudinally  diffuse 
near  the  end  of  their  existence.  Analytic  solutions  of  the  flow  equations  predict 
such  temperature  fronts,  confirming  the  numerical  result.  Determination  of  their 
existence  in  the  NTF  must  await  experimentation  after  its  completion. 

NTF  Actuator,  Sensor,  and  Control  Studies 

The  mechanical  actuators  for  GN2-vent  valves,  LN2-inlet  valves,  and  inlet  guide 
vanes  in  the  NTF  have  been  modeled  by  Gumas  (ref. 13) as  second-order  linear  systems. 
Valve  stroke-flow  calibrations  have  been  provided  as  functions  of  local  stagnation, 
supply,  and  vent  pressures. Also, two  types  of  high-accuracy  pressure  transducers 
were  dynamically  modeled  by  Gumas:  a  sonar  mercury  manometer  and  a  quartz  bourdon- 
tube  transducer.  Both  systems  have  dynamic-response  times of several  seconds.  Tem- 
perature  transducers  are  modeled  as  first-order  linear  systems  with  time  constants  of 
0 . 6 3  sec. 

Three  discrete  sampled-data  feedback  control  loops  of  the  proportional-integral 
(PI) type  with  variable  feedback  gains  for  controlling  stagnation  pressure,  stagna- 
tion  temperature,  and  Mach  number in  the  NTF  were  developed  by  Gumas.  Stagnation 
pressure  is  regulated  by  a  GN2-vent-valve  control loop; stagnation  temperature,  by 
an  LN2-inlet-valve  control  loop;  and  Mach  number,  by  a  fan  inlet-guide-vane  control 
loop.  Nominal  sampling-time  increments  are 0.1 sec  for  the  pressure  and  Mach  number 
control  loops  and 0.04 sec  for  the  temperature  control  loop. 

The  Gumas  simulations  of  actuators,  transducers,  and  feedback  controls  have  been 
appended  to  the  distributed-parameter  NTF  model. In order  for  the  computations  to 
be synchronized,  the  ordinary  differential  equations  describing  actuator  dynamics  are 
solved  with  simple  Euler  integration  for  a  time  step  Ati  equal  to  that  of  the 
MacCormack  method  (ref. 14) for  solving  the  partial  differential  equations.  The 
small  value  of  Ati  ensures  adequate  accuracy. 
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A l a rge  number of  experimental  simulation  studies  have  been  performed t o  eval-  
uate  the  performance of the  Gumas  control  laws a t  se lec ted   va lues  of Mach number, 
temperature,  and  pressure.  Typical  runs  simulate programmed set-point  changes  under 
automatic   control   in  Mach number, t o t a l  temperature ,   and  total   pressure  with  the 
o the r  t w o  var iab les   f ixed .   Per formance   c r i te r ia ,  which requi re  minimum s e t t l i n g  t i m e  
for the   cont ro l led   var iab le   and  minimum u p s e t   i n   t h e   f i x e d   v a r i a b l e s ,  may thus  be 
tes ted.   Figures  11 through 14 show s i m u l a t e d   r e s u l t s   f o r   s e l e c t e d  t e s t  cases.  Fig- 
ure 11 shows a con t ro l l ed  Mach number change  from 0.8 t o  0.9 a t  2.04  atm and 
333.3 K. The Mach number se t -poin t  command occurs  a t  5 sec; t h e   s e t t l i n g  t i m e  t o  a 
Mach number of 0.900 is approximately  15  sec. Upsets i n  pt a t  Tt are minimal, 
less than  0.0013 atm and  0.167 K, respec t ive ly .  Computed tune h i s t o r i e s  of  sensed 
t e s t - sec t ion  Mach number, t o t a l  temperature ,   to ta l   pressure,   in le t -guide-vane 
Pos i t ion ,  LN2-valve pos i t ion ,   and  GN2-valve p o s i t i o n   a r e  shown. 

Figures 12 and 13 i l l u s t r a t e  a cont ro l led   t empera ture   t rans i t ion  from  166.7 K t o  
178.9 K f o r  a Mach number of  0.8 a t  2.04 atm. The temperature  set-point command 
occurs a t  5 sec ,   and   the   t rans i t ion  t i m e  is approximately 37 sec. Figure 12 conta ins  
actuator   posi t ions  for   guide-vane  angle ,  LN2, and GN2, a long   wi th   t es t - sec t ion  Mach 
number, t o t a l  pressure,   and t o t a l  tempera ture ,   the   l a t te r   exhib i t ing   wel l -def ined  
tempera ture   f ronts .   Pressure   var ia t ion   dur ing   the   t empera ture   t rans i t ion  is less 
than 0.0013  atm; Mach number v a r i a t i o n  is less   than 0.004.  Figure 13 shows the  prop- 
agat ion of the  temperature   f ronts ,  moving a t  s t ream  ve loc i ty ,   a t   f ive   s ta t ions   a long  
the  NTF c i r c u i t .  The f r o n t s  decay  within s i x  tunnel   c i rcu i t   t imes .  

Figure 14 shows a con t ro l l ed   p re s su re   t r ans i t i on  from 2.04 t o  1.85 atm f o r  a 
Mach number of  0.6 a t  166.7 K. The pressure set-point  command occurs a t  5 sec. The 
p r e s s u r e   t r a n s i t i o n  t i m e  is approximately 7 sec;  however, Mach number and  temperature 
dis turbances  require  11- and  13-sec s e t t l i n g  times, respec t ive ly .  It is seen   t ha t  a 
s ignif icant   temperature   pulse  of -3.3-K amplitude  and  13-sec  duration is introduced 
by the   con t ro l l ed   p re s su re   t r ans i t i on .  Likewise ,  a Mach number upset  of 0.010 ampli- 
tude  occurs.  Thus,  although  the Mach number and  temperature  control  loops, which 
regulate   inlet-quide-vane  posi t ions and  LN2-inlet-valve  position, do not  appreciably 
in te rac t   wi th   the  GN2 con t ro l   l oop ,   t he   l a t t e r   con t ro l   l oop   i n t e rac t s   s ign i f i can t ly .  
with  the  other two loops i n  regulat ing  the  vent-valve  posi t ion.  

The s imula ted   e f fec ts  of a hypothetical  guide-vane  upset on s teady  control led 
flow i n   t h e  NTF are   seen i n  f i gu re  15. A 2.5O step  pulse   in   inlet-guide-vane  posi-  
t i o n  of  2-sec durat ion is  applied  with Mach number controls   f ixed  but   temperature  and 
pressure  controls   act ive.  A s i g n i f i c a n t  Mach number t r a n s i e n t   r e s u l t s  which decays 
a f t e r  10 sec. However, a t r a i n  of  temperature-impulsive  disturbances  of 2-K t o  3-K 
amplitude is es tab l i shed  which  does not  decay  with t i m e .  It can  be  seen  from  the 
valve-posi t ion  records  that   the   react ion of the  controls   to   the  temperature   impulses  
t ends   t o   r e in fo rce  and  maintain  their   exis tence.   This  test  case  demonstrates  the 
need f o r   t h e   c a r e f u l l y  programmed Mach number t r a n s i t i o n   c o n t r o l  which w a s  designed 
i n t o   t h e   a c t u a l  NTF control  system. 

The e f f e c t  of  control-loop  sampling rate on control  performance w a s  inves t iga ted  
i n  a series of s imulat ions.  The nominal  values  of  the  sampling  intervals  quoted 
previously were determined t o  be  the  largest   values   a l lowable  for   acceptable   per-  
formance.  Longer  sampling  intervals w e r e  found t o  cause slower control  response,  
increased  overshoot ,   and  excessive  osci l la t ion.   Sampling  intervals  of 0.5 sec   o r  
greater   caused  the  control   loops t o  become unstable.  

In  a study by Armstrong  and  Tripp  (ref.  18),  multivariable-design  techniques are 
appl ied t o  Mach number cont ro l  of t he  NTF wind tunnel .   In   par t icu lar ,   op t imal  
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Figure 11.- Simulation of cont ro l led  Mach number as predic ted  by NTF model. 
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linear-regulator  theory  and  eigenvalue-placement  theory  are  employed  to  develop  Mach 
number  control  laws,  which  are  evaluated  by  using  the  distributed-parameter  simula- 
tion  described  herein  with  actuator  dynamics  included. The  resulting  Mach  number 
contro1,law is found to  reduce  settling  time  significantly  over  that  achieved  by  a 
conventional  proportional-integral  control  loop.  Details  of  the  performance  compari- 
sons  described  here  appear  in  reference 18. 

CONCLUDING REMARKS 

The  three-dimensional  equations  of  fluid  flow  in  integral  form  have  been  applied 
to  a  differential  element  of  a  one-dimensional  tube  of  varying  cross-sectional  area. 
Heat-transfer  effects  due  to  thermal  conductivity  and  viscous  terms  have  been  intro- 
duced  to  derive  a  one-dimensional  system  of  partial  differential  equations  analogous 
to  the  three-dimensional  Navier-Stokes  equations,  which  were  applied  to  wind-tunnel 
geometry.  The  increase  in  entropy  along  the  length  of  the  tube  was  seen to be  caused 
by a  viscous  momentum loss. This  momentum loss, manifested  as  a loss in  total  pres- 
sure,  was  quantified  from  empirical  pressure-loss  relations  obtained  for  diffusers, 
turning  vanes,  screens,  and  cooling  coils  in  the  National  Transonic  Facility (NTF) 
wind  tunnel  at  the  Langley  Research  Center.  The  cryogenic  wind  tunnels  to  be  modeled 
contain  a  slotted  test  section  whose  analysis  is  based on  a lumped  model  wherein  the 
plenum  is  represented  as  a  lumped  volume.  The  model  is  extended  by  separating  the 
lumped  plenum  from  the  distributed  test  section  and  by  distributing  slot  flow  and  the 
test-section  length. 

The NTF  and  the  Langley  0.3-Meter  Transonic  Cryogenic  Tunnel  are  simulated  by 
means  of  this  model.  A  one-dimensional  model  of  the  fan  adapted  from  a  three- 
dimensional  fan  model  is  employed  to  relate  the  inlet-outlet  values  of  mass,  momen- 
tum,  and  energy  flow  rates  in  the  one-dimensional  tube.  Fan  compression  ratio, 
determined  by  fan  speed  and  an  inlet-guide-vane  system,  establishes  Mach  number. 
Temperature  control  is  effected  by  means  of  a  liquid-nitrogen  inlet  spray  bar  and 
control  valve.  Pressure  is  maintained  by  a  vent  control  valve.  Inlet-guide-vane 
and  control-valve  actuators  are  modeled  as  second-order  linear  systems. 

The  partial  differential  equations  of  the  distributed  parameter  model  are  solved 
numerically  by  using  an  explicit,  second-order,  finite-difference,  predictor- 
corrector  method.  The  lumped  ordinary  differential  equations  describing  actuator  and 
control  dynamics  are  solved  by  simple  Euler  integration  synchronized  with  the  finite- 
difference  computation. 

The model  has  been  employed in the  developnent  of  multivariable  control  tech- 
niques  based on optimal-regulator  theory  and  eigenvalue-placement  theory.  (See 
NASA  TP-1887.) It has  been  employed  extensively  in  the  development  of  digital- 
process  control  algorithms  for  controlling  Mach  number,  total  pressure,  and  total 
temperature  in  the  NTF  wind  tunnel. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
July 6, 1983 
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A P P E N D I X  

SOME STEADY-FLOW RELATIONSHIPS 

The d i f fe ren t ia l   equa t ions   for   one-d imens iona l   s teady   f low  a re  

d 2 
dx  dx "(pu w + p w )  = p - + jl 

Equations (AI) and ( A 2 )  c an   be   wr i t t en ,   r e spec t ive ly ,   a s  

* + E * = " -  u dw + 

dx p dx w dx pw 

and 

Tota l   en tha lpy  ht i s  defined a s  

ht 
= e + E + - u  1 2  

P 2  

where e i s  the   in te rna l   energy  per u n i t  mass. Equation (A31 becomes 

or 

dht q' - h m' 

dx P W  

t u - =  

For   an  ideal   gas ,   the   total   enthalpy  can  be  wri t ten a s  

( A 8  
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APPENDIX 

With  substitution  of  equation (A9), equation (A8) can  be 

This  expression  can  be  substituted  into  equation (A4) to 

w dx  ypw 

written  as 

yield 

Equations (AS) and (All) are  solved  simultaneously  to  eliminate  du/dx so that 

It  is  desired  to  obtain  a  steady-flow  expression  for  the  gradient  of  total  pressure 
dpt/dx  in  terms  of m', j', and 9'. Equation (A12) will  be  found  to  be  useful to 
that  end.  The  defining  equation  for  pt  is 

L 
Y- 1 

Pt = p(l + b <) 
where 

b =  y-l 
2Y 

Differentiation  of  equations (A2) and (A13) and  considerable  manipulation  yield 
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APPENDIX 

Finally,  note  that 

b E = e M 2  
2 

P 2 

so that  equation  (A16)  becomes 

Y 1 
2 - 
Y- 1 Y-1 

- dx  dpt = l(1 w + 2 M2) j' - &(l + M2) k' + ( y  - 1)M2(q' + u2m)] (A18) 

Thus,  dpt/dx  is  a  linear  function  of  m',  j',  and 9'. 

Now,  obtain  an  expression  for  the  gradient  of  entropy  ds/dx  for  steady  flow. 
Differentiate  equation (A6) to  obtain 

*t de 
dx  dx  dx  dx 
-=.- + p g + v  * + U -  du 

By  the  second  law  of  thermodynamics,  the  differentials  de,  ds,  and  dv  for  a  pure 
substance  are  related  as 

de = T  ds - p  dv  (A201 

Substitution  of  equation  (A20)  into  equation  (A19)  gives 

at  du - 
dx + T d x  

d s + v 2 + u -  dx 

Expressions  for  dht/dx  and  u - + v dx * are  obtained  from  equations  (A5 ) and ( A 9  . 
Substitution  of  these  expressions  into  equation  (A21)  gives 

du 
dx 

- -  ds 
dx 

- 

Equation  (A22) 

- =  ds 
dx 

may  be  rewritten  as 
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